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Bond functions, basis set superposition errors and other practical issues
with ab initio calculations of intermolecular potentials

FU-MING TAO{

Department of Chemistry and Biochemistry, California State University, Fullerton,
California 92834, USA

Intermolecular potentials determine the physical and chemical properties of
matter. Quantum mechanical calculation based on ab initio molecular orbital
theory has overcome many challenging problems for the past decade and become a
leading tool for the study of intermolecular potentials. Bond functions, supple-
menting traditional atomic basis sets, have been proven highly e� ective in
o� setting major de®ciencies in atomic basis sets and are increasingly popularly
employed in ab initio calculations of intermolecular potentials, particularly for
weakly bound systems. This review revisits the present author’s own work that has
contributed to the eventual development of the bond function method, followed by
highlighting recent applications of the method to a range of weakly bound systems.
Emphases are placed on the present author’s unique logic and viewpoints about a
range of related issues, such as the e� ciency of basis set, the basis set superposition
error and the counterpoise method, which have played an important role in the
conceptual development of the bond function method.
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1. Introduction
Determination of intermolecular potentials is essential in our understanding of

the physical and chemical properties of matter. For the past decade, considerable
progress has been achieved in the fundamental understanding of intermolecular
interactions as well as in the determination of accurate intermolecular potentials,
particularly for weakly interacting systems (Brutschy and Hobza 2000). Quantum-
mechanical calculation based on ab initio molecular orbital theory has played a
central role that it never did before in leading the progress in the study of
intermolecular potentials.

Many factors have contributed to the recent advances in ab initio study of
intermolecular potentials. These include the development and improvement of new
computer technologies and computational software, allowing the use of highly
correlated methods and large basis sets. Various computational strategies and special
techniques have also been proposed and developed in the attempt to improve the
e� ciency and accuracy of ab initio intermolecular potentials. Among the various
strategies and techniques, one method has achieved a great impact on improving the
e� ciency and accuracy and become an increasingly popular technique for ab initio
calculation of intermolecular potentials. This new method supplements a traditional
atomic basis set with a small set of bond functions, together with the full counter-
poise correction (Tao and Pan 1991a,b, 1992a,b,c,d,e,f ). The bond function method
is convenient to apply and has proven unusually e� cient in recovering the dispersion
energy, leading to a signi®cant improvement in the ab initio intermolecular potentials
(Hobza 1994, William et al. 1995, Bauschlicher and Partridge 1998, Partridge and
Bauschlicher 1999, Taylor and Hinde 1999).

The use of bond functions has remained e� ective and important even with the
latest development of large systematic basis sets, such as the Dunning (1989)
correlation-consistent basis sets (Kendall et al. 1992, Woon and Dunning 1993,
Xantheas and Dunning 1993). Koch et al. (1998) have shown that the performance
of a moderate basis set with bond functions can be superior to that of the aug-cc-
pVQZ basis set. On the other hand, the widely available Dunning correlation-
consistent basis sets in most ab initio programs have in fact enabled bond functions
to be employed conveniently (Tao 1993c), promoting the popular use of bond
function basis sets. For the past 3 years, there has been a dramatic increase in the
literature reporting the applications of bond function basis sets for accurate ab initio
intermolecular potentials of a wide variety of systems, from simple rare gas dimers to
the interaction systems involving aromatic hydrocarbons and open-shell radicals.

This article reviews the development of the bond function method and some of
the recent applications to various systems. The present author has contributed
critically in the development of the method, particularly at the early stage when
controversial opinions persisted about the basis set superposition error (BSSE) and
other related problems. Some of the present author’s initial thoughts and conceptual
arguments will be detailed in this review. Several related issues, including BSSE and
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the counterpoise method, will also be discussed with unique opinions. Three past
reviews (van Lenthe et al. 1987, Hobza and Zahradnik 1988, van Duijneveldt et al.
1994), which discuss the challenges and controversial problems for ab initio
determination of intermolecular potentials and have bene®ted the present author,
are recommended to interested readers and the major viewpoints there still stand
today.

The article is organized as follows. Section 2 introduces the ab initio super-
molecular calculation of intermolecular potentials and the challenging problems in
the area. Section 3 describes the thoughts and intuition that guided the early work on
the use of bond functions. Section 4 discusses the nature of BSSE and the logical
justi®cation for the counterpoise method. Section 5 highlights recent applications of
bond function basis sets for accurate ab initio intermolecular potentials of various
weakly bound systems. Section 6 presents the conclusion and ®nal remarks on the
use of bond function basis sets.

2. Background
About a decade ago, ab initio calculation of intermolecular potentials was

confronted with three major problems or challenges in practice (van Lenthe et al.
1987, Hobza and Zahradnik 1988): the demand for large ¯exible basis sets, the
demand for the highly correlated theoretical method, and the correction for the
BSSE. These three problems seriously limited the accuracy of calculated intermole-
cular potentials at the time and prevented the full acceptance of ab initio results
among experimental physical chemists, particularly among those using high-resolu-
tion spectroscopy. Experimental methods such as microwave and infrared spectro-
scopy, recognized as being more accurate and reliable, were widely used in the study
of intermolecular structure and potentials (Dyke 1984, Janda 1985, Legon and
Millen 1986, Novick et al. 1990, Leopold et al. 1994, Zwier 1998).

Ab initio calculation of intermolecular potentials can be carried out by either the
supermolecular approach or the perturbation approach. Both approaches, however,
su� er from similar limitations, particularly in terms of basis set. The supermolecular
approach can be applied equally to van der Waals (weak) and covalent bond (strong)
interactions and is more straightforward and more commonly used. In this
approach, the interaction energy (or potential) ¢EINT between two molecules A
and B is given as an energy di� erence between the dimer (or supermolecule) AB and
the two constituent molecules (submolecules) A and B, that is

¢EINT ˆ EAB ¡ …EA ‡ EB†: …1†

The total electronic energies EA, EB and EAB of molecules are typically of the orders
of 10±103 au (Hartree) while the intermolecular energy ¢EINT is around 10¡3 au or
smaller. Challenges and controversies arise on how to calculate accurately and
consistently the molecular energies EA, EB and EAB, such that su� ciently reliable

¢EINT values are resulted.
Electron correlation plays a critical role in the intermolecular interactions

between the two stable closed-shell molecules A and B. The intermolecular energy

¢EINT can formally be partitioned into two components, namely ¢EHF and ¢ECOR,
the Hartree±Fock and correlation contributions respectively:

¢EINT ˆ ¢EHF ‡ ¢ECOR: …2†

Ab initio calculations of intermolecular potentials 619
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Approximately, ¢EHF recovers contributions from the exchange repulsion and
electrostatic interactions between the two molecules while ¢ECOR recovers the
dispersion energy. The electrostatic interaction can be repulsive or attractive,
depending upon the mutual orientations of the molecules, but the dispersion
interaction is always attractive. The calculation of ¢EHF is relatively simple and
straightforward. However, the calculation of ¢ECOR requires a post-Hartree±Fock
method for the treatment of electron correlation. For interactions involving non-
polar or slightly polar molecules, ¢EHF is repulsive everywhere in the potential
surface except for the long-range tail region while the attractive contribution in
¢EINT is dominated by ¢ECOR. As a result, the accurate treatment of electron
correlation is critically important in recovering the well depth and the attractive
region of an intermolecular potential.

The accurate calculation of ¢EINT also relies on the large ¯exible basis set for the
expansion of one-particle electronic wavefunction. It is found that ¢EHF converges
fairly rapidly with the basis set. However, ¢ECOR converges much more slowly,
which is consistent with the fact that ¢ECOR recovers primarily the dispersion
energy. The basis set must typically include a large set of polarization functions, up
to g or h type, as well as a consistently large set of core and valence-shell basis
functions. Not only were these high polarization functions generally unavailable a
decade ago, but also computers at the time were too slow or too small to handle such
a large basis set except for very small intermolecular systems such as He2. This is
particularly true considering that a high-level treatment of electron correlation is
also required.

Further complication to the basis set problem is the interference of the basis set
superposition error (BSSE). In the supermolecular calculation (equation (1)), the
energies EA and EB of the submolecules are calculated with the respective basis sets
(say, ÀA and ÀB) for the submolecules while the energy EAB of the supermolecule is
calculated with the basis set ÀAB for the supermolecule formed by union of the
submolecule basis sets …ÀAB ˆ ÀA ‡ ÀB†. In practice, the basis sets are never
complete. The extension of basis set in the supermolecule AB from the submolecule
basis sets gives arise to a favoured description of the supermolecule over the
submolecules. The energy lowering in EAB due to such an extension of basis set is
commonly known as the BSSE. The BSSE e� ect is signi®cant compared with ¢EINT,
although it is di� cult to be quanti®ed unambiguously. As a result, the ¢EINT tends
to be overestimated or even completely overshadowed by the BSSE if it goes
uncorrected. Worse still is the fact that, if a de®cient basis set is used, the BSSE
may very likely lead to apparently better ¢EINT values without corrections than with
corrections, in comparison with the experiment values. This is because the major
de®ciency in a basis set is typically a lack of adequate polarization functions that are
necessary to recover the attractive dispersion energy contribution in ¢EINT. The
presence of the BSSE may not only severely interfere with ¢EINT but also
compensate by chance the major de®ciency in the basis set, leading to a highly
unpredictable performance of a basis set on ¢EINT.

3. Bond functions
3.1. From Rydberg molecule to van der Waals molecule

Rydberg molecules, such as H3, H3O and NH4, are a class of molecules for which
the ground electronic state is dissociative but excited states enjoy lifetimes quite long
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compared with vibrational and rotational periods (Herzberg 1979, 1987, Raynor and
Herschbach 1982, Olah et al. 1986). To calculate the potential energy surface of a
Rydberg molecule, di� use functions of the s and p types, centred at the centre of the
molecule, must be included in the basis set for the appropriate description of the
Rydberg states (McMaster et al. 1982). For H3O or NH4, such di� use functions are
centred on the oxygen or nitrogen atom. For the equilateral triangular H3 molecule,
however, the di� use functions may be most e� ectively centred at the geometric centre
of H3, where no atom exists.

The above thoughts, together with a study of H4O
‡ as a potential Rydberg

molecule (Tao and Pan 1989), prompted the present author’s ®rst attention to the
unique role played by basis functions centred o� atom, or non-atomic basis
functions. They thought, for the reasons given below, that the usefulness of such
basis functions might be general for all molecules and not limited to Rydberg
molecules. All molecules have excited Rydberg states, although they may not
necessarily be Rydberg molecules. These Rydberg states contribute signi®cantly to
electron correlation and, therefore, to the stability of a molecule. This is particularly
true for tight molecules of high symmetry where Rydberg states occur in quite low
excited states. Benzene might be a good example of such molecules (Tao and Pan
1992f ). As a result, one could suspect that the e� ect of electron correlation might be
underestimated if the Rydberg states were poorly described. Such a problem would
be e� ectively resolved by use of basis functions centred at the centre of the benzene
molecule.

The covalent-bonded molecules such as benzene turned out to be not an ideal
case to demonstrate the e� ect of non-atomic basis functions. This is because electron
correlation does not play a decisive role in the stability of benzene. A better case
would be a molecule that is bound purely by the electron correlation e� ect. Thoughts
in this direction eventually led to the present author’s full attention to the use of
bond functions for ab initio study of van der Waals molecules.

3.2. Practice with bond functions
Around 1990, the literature on ab initio study of van der Waals molecules was

already enormous and several informative reviews on the topics were available for a
beginner in the area. As expected, the area was directly challenged by problems
associated with basis set. The traditional atomic basis set at the time was far from
adequate for the accurate calculation of interaction energy of weakly bound systems,
particularly of van der Waals molecules. Such a basis set problem was further
complicated by another unresolved problem: how to correct for the BSSE. As a
result, the attention to the BSSE problem became unavoidable, and the two
problems must be considered together.

Convincing evidence was obtained to show (Tao and Pan 1991a,b, 1992c, Yang
and Kestner 1991a,b) that the counterpoise method of Boys and Bernardi (1970) was
a reliable approach to the BSSE problem. With the counterpoise method, bond
functions were tested for the calculation of the neon dimer potential (Tao and Pan
1992a,d,e). A well depth of 130 mHartree was obtained at the fourth-order Mùller±
Plesset (MP4) level with the 6-311‡G(3d2f) atomic basis set augmented with two
sets of s- and p-type bond functions, 2s2p in contrast with a value of 115 mHartree
without bond functions (Tao and Pan 1992a). The well depth from the empirical
potentials for Ne2 ranges from 131 to 136 mHartree (Aziz 1976, 1980, Aziz et al.
1983). The 2s2p bond functions were located at the midpoint of the Ne±Ne van der
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Waals bond and the exponents used were ¬s ˆ ¬p ˆ 0:3, 0.075. The use of bond
functions resulted in 15 mHartree, or 13%, of net improvement in the calculation well
depth for Ne2. Similar improvements were also found in the other regions of the
interaction potential. However, a subtle but rather serious problem was noticed as
the study was carried out. The bond functions were found to change the Hartree±
Fock interaction energy ¢EHF. Such an e� ect was expected to be rather small for
weak interactions since the bond functions were primarily intended to recover the
correlation contribution ¢ECOR. However, the e� ect was found to be larger than
expected if multiple bond functions with large exponent values were used, indicating
a possible severe distortion in molecular electronic distribution caused by the
introduction of bond functions. To minimize such a distortion, a small set of bond
functions were used with the exponent values so adjusted that the ¢EHF would
remain approximately the same as that without bond functions (Tao and Pan 1992a).

It was not completely clear at this point that the e� ect of bond functions was
genuine or simply an artefact resulting from the possible unnatural alternation of
electronic distribution. The electronic distribution distortion was probably attrib-
uted to the inadequacy of the atomic basis set used, such as 6-311‡G(3d2f ) in the
Ne2 study (Tao and Pan 1992a). A possible solution would be to use a su� ciently
large basis set to improve the core and valence electron wave functions. Such an idea
was ®rst tested in a study on the He2 interaction potential (Tao and Pan 1992b). The
helium dimer is small enough that the basis functions for the valence shell (1s) could
be easily saturated. A series of relatively large basis sets was employed to examine the
e� ects from the bond function basis sets with respect to the corresponding purely
atomic basis sets. The study convincingly showed that the bond functions were
highly e� cient in reproducing ¢ECOR while maintaining ¢EHF unchanged from that
for the purely atomic basis sets. The use of bond functions drastically improved the
systematic convergence of ¢EINT at di� erent regions of the interaction potential for
He2 (table 1).

In the He2 study (Tao and Pan 1992b), a ®xed set of the bond functions,
{3s3p2d}, with the s and p exponents 0.9, 0.3 and 0.1 and the d exponents 0.6 and
0.2, was suggested to be generally applicable to other van der Waals systems. These
Gaussian functions are ¯exible enough to span the entire region of practical interest
for any van der Waals bond. This set of bond functions, or an expanded version of
this set, has indeed received wide popularity in later studies on di� erent systems. One
might wish to optimize the exponents for the best e� ect from the bond functions.
One might also expect the optimal exponents for the bond functions to depend on
the intermolecular distance and to di� er from one system to another. However, it
turns out that the dependence or di� erence is rather weak, and is further minimized
by the use of multiple functions. The bond functions {3s3p2d} with the given
exponents are well balanced and e� ective in a wide range of intermolecular distance,
and are appropriate for di� erent intermolecular systems. This has been veri®ed
independently and repeatedly by many researchers in studies of di� erent systems,
including the latest study of the water dimer by van Duijneveldt-van de Rijdt and
van Duijneveldt (1999).

Basis sets supplemented with the {3s3p2d} bond functions were immediately
applied in the calculations of the He±Ne and He±Ar potentials (Tao 1993c). Large
well-tempered atomic basis sets of the s and p types (Huzinaga 1965, Huzinaga and
Klobukowski 1988, Dingle et al. 1989) were used to ensure near saturation of the
basis functions for core and valence electron orbitals. More importantly, the
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dependence of ¢EHF, ¢ECOR and ¢EINT on the position of the bond functions was
studied (table 2). The study showed that ¢ECOR or ¢EINT was highly stable with
respect to the shift of the bond functions in a wide range along the van der Waals
bond, which further established the stable e� ective role of the bond functions.
Similar studies were also carried out for the main geometric con®gurations of the
He±H2 system (linear and T shaped) (Tao 1994c) and the Ar±HF system (linear Ar±
H±F, T shaped and linear Ar±F±H) (Tao and Klemperer 1994). For the He±H2

system, test calculations were also conducted by shifting the bond functions away
from the van der Waals bond (the line connecting the helium atom and the H2 centre
of mass). The bond functions were used to calculate three-body intermolecular forces
for the helium trimer (Tao 1994a). All these studies showed that the bond functions
are e� ective and reliable, and stable with the position of the functions. This
su� ciently validates applications of bond functions to intermolecular systems
consisting of diatomic or polyatomic molecules.

3.3. An interesting case: ammonia dimer …NH3†2

Following the establishment of the e� ective role of bond functions, bond
function basis sets were used in ab initio studies of a number of weakly bound
systems. One of the most interesting applications was a study of the equilibrium
structure for the ammonia dimer (Tao and Klemperer 1993). The molecular
structure for (NH3)2 was the subject of a considerable body of experimental and
theoretical studies during the 1980s and the early 1990s. The central question was
whether or not the dimer could be recognized as a prototypical hydrogen-bonded
complex similar to the water dimer and the hydrogen ¯uoride dimer, where one NH3

unit acts as a hydrogen bond donor to the other unit. Gas-phase rotational spectra of
(NH3)2 indicated inconsistency with a hydrogen-bonded structure for (NH3)2 and
suggested an asymmetric cyclic structure (Fraser et al. 1985, Nelson et al. 1985,
1987a,b). However, most theoretical calculations (Sagarik et al. 1986, Frisch et al.
1986, Latajka and Scheiner 1986, Hassett et al. 1991) concluded at the time that the
stable structure for (NH3)2 would contain a traditional hydrogen bond. A new
infrared spectroscopy study (Loeser et al. 1992) also supported the hydrogen-bonded
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Table 2. Dependence of ¢EHF, ¢ECOR and ¢EINT on the position of the bond functions
{3s3p2d} for He±Ne at the internuclear distance R ˆ 5:8a0 from MP4 calculations (Tao
1993c).a

RNe-G
b ¢EHF ¢ECOR ¢EINT

(units of a0) (mHartree) (mHartree) (mHartree)

2.6 42.2 7103.3 761.1
2.8 42.2 7103.5 761.3
2.9 42.2 7103.6 761.4
3.0 42.2 7103.7 761.5
3.2 42.2 7103.7 761.5
3.4 42.2 7103.6 761.5
Without bond functions 42.2 772.5 730.3

a The atomic basis set for helium is [5s2p1d] from Huzinaga (1965) and for neon is [8s5p2d1f ]
from Huzinaga and Klobukowski (1988) and Dingle et al. (1989).
b R is the distance between the neon nucleus and the centre of the bond functions along the
HeÐNe bond.
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structure for (NH3)2, while it also recognized that the hydrogen bond might not be as
rigid as previously thought. The debate about the structure for (NH3)2 was featured
in The Chemical & Engineering News (Baum 1992), partly because of its wide
implications in biological systems.

Bond function basis sets were applied in the ab initio study of the equilibrium
structure for the ammonia dimer (Tao and Klemperer 1993). Although ammonia is a
polar molecule, the interaction energy ¢EINT of (NH3)2 in the attraction region was
found to be contributed nearly equally from ¢EHF and ¢ECOR. This is in contrast
with the case of the water dimer or the hydrogen ¯uoride dimer, where ¢EINT is
dominated by ¢EHF. As a result, the recovery of a converged ¢ECOR is critical for
the accurate location of the potential minimum for (NH3)2. More signi®cantly, Tao
and Klemperer maintained that the hydrogen-bonde d structure for (NH3)2 would be
favoured over other structures in a calculation using an inadequate atomic basis set.
The reason for this is that the basis functions on the hydrogen atom of the hydrogen
bond donor would inevitably play the role as bond functions to recover ¢ECOR. The
other structures without a hydrogen bond, on the other hand, are lack of such basis
functions and therefore would be unfavorable in the calculations. In other words,
calculations using a purely atomic basis set would be biased and favour the
hydrogen-bonded structure for (NH3)2.

Tao and Klemperer (1993) further proposed that the use of bond functions could
strategically minimize such a bias and give a more accurate account for the
equilibrium structure of (NH3)2. Two distinct structures of (NH3)2 were compared
to show the e� ect of bond functions. One was the traditional hydrogen-bonded
structure with Cs symmetry and the other was the cyclic structure with C2h

symmetry. Table 3 compares the ¢EHF, ¢ECOR and ¢EINT values between the
two structures calculated at the second-order Mùller±Plesset (MP2) level using a
basis set with various bond functions. Consistent with early ab initio results, the Cs

structure was more stable than the C2h structure from calculations without bond
functions. With the bond functions, however, the C2h structure became more stable
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Table 3. Comparisons of ¢EHF, ¢ECOR and ¢EINT for (NH3)2 between the hydrogen-
bonded structure (Cs) and the cyclic structure (C2h) from MP2 calculations (Tao and
Klemperer 1993).

Cs structureb C2h structureb

Basisa± ¢EHF ¢ECOR ¢EINT ¢EHF ¢ECOR ¢EINT

{bond functions} (mHartree) (mHartree) (mHartree) (mHartree) (mHartree) (mHartree)

Without 72.832 71.619 74.451 72.512 71.809 74.321
bond functions
-{3s} 72.804 71.723 74.527 72.505 71.964 74.469
-{1s1p} 72.776 71.860 74.636 72.510 72.071 74.581
-{2s2p} 72.714 71.911 74.625 72.523 72.115 74.638
-{3s3p} 72.723 71.916 74.639 72.524 72.136 74.660
-{3s3p2d} 72.685 72.014 74.699 72.489 72.264 74.753

a The atomic basis set for hydrogen is [4s1p] contracted from (9s1p) of Huzinaga (1965) and
for nitrogen is [7s5p3d] contracted from (15s10p3d) of Huzinaga and Klobukowski (1988) and
Dingle et al. (1989).
b The Cs structure is from Hasset et al. (1991) and the C2h structure is from Latajka and
Scheiner (1986).
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than the C2h structure. It is interesting to note from table 3 that the hydrogen-
bonded structure is always favoured at the Hartree±Fock level while the cyclic
structure is favoured by electron correlation.

To ®nd the equilibrium structure for (NH3)2, Tao and Klemperer (1993) also
calculated the minimum energy pathway for the hydrogen donor±acceptor inter-
change between two equivalent Cs structures. It was found that the minimum energy
pathway was extraordinarily ¯at in an extended region around the C2h structure.
This suggested that a potential minimum would be possible at any point in the broad
region and it would be di� cult in claiming the equilibrium structure for (NH3)2 with
a certainty. The study clearly ruled out the traditional hydrogen bonded structure as
the equilibrium structure for (NH3)2, because a traditional hydrogen bond would be
much more rigid and directional. A Stark e� ect measurement (Linnartz et al. 1993)
supported the highly non-rigid structure for (NH3)2 with a very ¯at potential surface
near its equilibrium structure.

The most recent theoretical studies (Olthof et al. 1994, Lee and Park 2000) have
agreed on an equilibrium structure for (NH3)2 that is asymmetric, cyclic and close to
the C2h structure. These studies also show that the potential along the asymmetric
and the symmetric C2h structures is extraordinarily ¯at, with a small barrier of about
7 cm¡1 at the C2h structure from the potential minimum. This result is in good
agreement with the early ab initio study using bond functions (Tao and Klemperer
1993).

3.4. Historic debate on the use of bond functions
The attempt to use non-traditional functions existed for decades to improve the

convergence of a basis set (Ahlrichs and Kutzelnigg 1968, Rothenberg and Schaefer
1971). Many researchers tested the idea for the calculation of covalent bond energies
such as for N2 but obtained rather controversial results (Hirsch et al. 1977,
Bauschlicher 1980, 1985, Wright and Williams 1983, Wright and Buenker 1985,
Martin et al. 1989a) . One of the most serious problems was that the calculated bond
energy would sensitively depend on the parameters of bond functions, as pointed out
by Bauschlicher (1980, 1985). In most cases, bond energies could be easily over-
estimated by the use of bond functions. Wright and co-workers (Wright and Buenker
1985, Barclay and Wright 1991, Wright and Barclay 1991) resorted to the use of
optimized bond functions in terms of both the exponents and the locations of the
functions, but this would severely limit the predictive value of ab initio theory.

The principal problem in the early use of bond functions was the neglect of the
basis set superposition error (BSSE). The e� ect of counterpoise corrections was
explored in several studies (Martin et al. 1989b, Wright and Barclay 1991), but such
corrections were strongly rejected by these studies on the ground that the corrections
made the results appear worse. On the other hand, Bauschlicher (1980, 1985)
recognized the serious BSSE problem with bond functions and strongly discouraged
the use of bond functions. He concluded that the e� ect of bond functions was
completely an artefact due to the BSSE and that there were no bene®ts from bond
functions. At that time, the way in which the BSSE could be correctly removed was a
highly controversial topic and, as a result, there was widespread hesitance in using
bond functions.

A systematic study (Tao 1993a) clearly shows that the Boys±Bernardi full
counterpoise method plays a key role in taking proper advantage of bond functions.
Table 4 compares the values for the bond dissociation energy De of F2 with and
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without counterpoise corrections, calculated at the MP4 level using a series of basis
sets, formed by adding di� erent sets of polarization functions and bond functions to
the 6-311G basis set. It is clear that the De values without counterpoise corrections
easily become overestimated, even without the use of bond functions. The use of
bond functions drastically enhances the overestimates of De. In contrast, the De

values with counterpoise corrections are all underestimated compared with the
experimental value (1.6585 eV) but they converge systematically to the experimental
value. The bond functions appear to produce e� ects on De complementary to atomic
polarization functions, indicating that bond functions assume the role of polariza-
tion functions. Since the total number of functions is much smaller with the bond
functions than with the polarization functions, the bond functions are more e� cient
than the polarization functions. Similar tests and results were obtained for other
diatomic molecules and for other molecular properties such as equilibrium bond
lengths and harmonic frequencies (Tao 1993b, 1994b).

4. Basis set superposition errors and the counterpoise method
4.1. De®nition of the basis set superposition error problem

As introduced earlier, it is generally interpreted that the BSSE originates from the
extension of the basis set in the supermolecule from the submolecule basis sets and,
as a result, the BSSE e� ect may be quanti®ed as an energy lowering in EAB due to
such an extension of the basis set. However, the way in which such an e� ect is
quantitatively calculated and accurate correction for BSSE is made has turned out to
be a great controversy for decades.

Boys and Bernardi (1970) proposed that the full set of basis functions ÀAB used in
the calculation of the supermolecule energy EAB should also be used in the
calculations of the submolecule energies EA and EB. The intermolecular energy
should, therefore, be given as

¢EINT;CP ˆ EAB…ÀAB† ¡ ‰EA…ÀAB† ‡ EB…ÀAB†Š; …3†

rather than

¢EINT;NCP ˆ EAB…ÀAB† ¡ ‰EA…ÀA† ‡ EB…ÀB†Š; …4†

Ab initio calculations of intermolecular potentials 627

Table 4. Values of the dissociation energy De for F2 calculated at the MP4 level with and
without counterpoise corrections (Tao 1993a).

De (eV) for the following polarization functionsa

None d 2d1f 3d2f
Bond
functions NCPb CPb NCPb CPb NCPb CPb NCPb CPb

None 0.689c 0.559 1.169 0.995 1.573 1.435 1.778 1.556
3s 1.451 1.091 1.566 1.226 1.747 1.500 1.871 1.562
3s3p 2.554 1.445 1.904 1.456 2.054 1.549 2.145 1.577
3s3p2d 3.566 1.490 2.819 1.512 2.263 1.586 2.284 1.593

a The atomic basis set used for core and valence shells is 6-311G.
b NCP, without counterpoise corrections; CP, with counterpoise corrections.
c The experimental De value is 1.6585 eV.

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



where EA…ÀA† and EB…ÀB† are the energies of the submolecules A and B respectively,
calculated using the respective basis sets for the submolecules. Equation (3) gives the
intermolecular energy by the counterpoise method while equation (4) gives the value
without a counterpoise correction. The di� erence between the two equations is a
quantity commonly recognized as the BSSE by the counterpoise method:

¯CP ˆ ‰EA…ÀA† ‡ EB…ÀB†Š ¡ ‰EA…ÀAB† ‡ EB…ÀAB†Š: …5†

Clearly, such a correction is consistent with what is believed to be the origin of BSSE.
Until very recently, the counterpoise method did not appear to produce better

results than the non-counterpoise method, equation (4). The values of ¢EINT;CP in
most cases were severely underestimated while those of ¢EINT;NCP were over-
estimated. This led many to believe that the counterpoise method would give
overcorrections for BSSE (Olivares del Valle et al. 1986, Loushin et al. 1986, de
Oliveira and Dykstra 1995). The argument of overcorrection was based on the Pauli
principle which would prevent one submolecule to fully occupy the basis functions of
the other submolecule in the calculation of EAB.

Alternative counterpoise methods (Johansson et al. 1973, Daudey et al. 1974,
Spiegelmann and Malrieu 1980) were proposed for the BSSE correction, most of
which suggested to scale down the counterpoise correlation using di� erent schemes
based on various interpretations of BSSE, but none of them became successful and
accepted (Gutowski et al. 1986, 1987). A general consensus thus prevailed until quite
recently was to avoid the counterpoise method by using extraordinarily large,
systematically saturated basis sets so that the BSSE would be practically insigni®cant
(Schwenka and Truhlar 1985, Frisch et al. 1986). This idea was encouraged by the
latest development of the correlation-consistent basis sets of Dunning and coworkers
(Dunning 1989, Kendall et al. 1992, Woon and Dunning 1993, Xantheas and
Dunning 1993).

4.2. Validity of the counterpoise method
Most of the arguments against the counterpoise method are based on the fact

that the counterpoise method does not produce results in better agreement with
experiment than the non-counterpoise method. These arguments appear to overlook
the inherited de®ciencies in the basis set and theory used for such comparisons. In
most situations, the BSSE seems to compensate for the errors caused by the
de®ciencies in the basis set and theory. In some special cases, the BSSE could
happen to compensate exactly for the other errors, prematurely giving a sense of
security about the quality of the basis set and theory used. In such cases, the balance
in cancelling of errors would be destroyed if the BSSE were removed, causing the
BSSE correction to appear unfavourable. A good example is the calculation of the
binding energy for the water dimer. At the MP2 level without counterpoise
corrections, Frisch et al. (1986) obtained a value of 5.35 kcal mol¡1 using the 6-
311‡G** basis set, in contrast with a value of 4.95 kcal mol¡1 by Feller (1992) using
a much larger basis set (aug-cc-pVTZ). Compared with the experimental value of
5.4 0.7 kcal mol¡1, the former appears to be favoured over the latter, despite an
apparently inferior basis set used in the former calculation. With counterpoise
corrections, however, the respective values of the binding energy from the two basis
sets are 4.05 and 4.64 kcal mol¡1, leading to the conclusion that the 6-311+G** basis
set is inferior to aug-cc-pVTZ.

F.-M. Tao628

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
0
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



In contrast, proponents of the counterpoise method insist that one should focus
on the genuine result expected for the quality of the basis set and theory used. In
recovering the dispersion energy, the quality of a basis set is measured by the size of
the polarization functions in the basis set and the level of electron correlation in the
theory. One would not expect to recover the dispersion energy in a calculation
without the use of su� cient polarization functions and a highly correlated method.
In the case of the water dimer discussed above, the dispersion energy contributes
about 40% to the binding energy at the equilibrium geometry. As a result, one would
expect an inferior result from the 6-311‡G** basis set compared with that from aug-
cc-pVTZ. The counterpoise method makes it possible to give a result consistent with
the quality of the basis set.

There is still no formal proof to date to validate rigorously the counterpoise
method. However, various schemes and arguments have been proposed in an
attempt to prove numerically the validity of the counterpoise method (Meyer et
al. 1980, Szczesniak and Scheiner 1986, Yang and Kestner 1991a,b, Tao and Pan
1991a, 1992c). The fundamental philosophy followed in these schemes is that the
calculated interaction energy ¢EINT;CP is expected for the quality of the basis set and
theory or that the improvement in ¢EINT;CP is consistent with the improvement in
the basis set and theory. A major problem in these studies is the fact that the quality
of a basis set is hardly quanti®able in a rigorous manner (van Duijneveldt-van de
Rijdt and van Duijneveldt 1992). As a result, the validity of the counterpoise method
is not formally or rigorously con®rmed.

A rigorous and ultimate con®rmation of the validity of the counterpoise method
may even not exist. However, the application of the counterpoise method has
become widespread, providing strong evidence in support of the method itself. A
general consensus has apparently been reached as of today that the counterpoise
method is valid.

4.3. Consistency in the basis set and theory
As discussed above, the counterpoise method is now widely accepted by the

majority of researchers in the area in spite of the lack of a formal proof for the
validity of the method. The following discussions (Tao 1993a,c, 1996, 1999) might
o� er a logical justi®cation for the counterpoise method.

The BSSE, as it is named, is commonly regarded as an error introduced in the
calculation of an energy di� erence from one state (two separate submolecules A and
B) to another (the supermolecule AB). Such an error is simply an inconsistency in
energy between the two calculations using two di� erent sets of basis functions. In
order to calculate the energy di� erence accurately, the two calculations must be
carried out in the most consistent manner. This requires the use of the same theory
and the same basis set for both calculations. Practically and conceptually it is easier
to follow the use of the same theory, with special attention to the size consistency of
the theory. However, it is not so obvious to understand the consistency in the basis
set and to follow it rigorously in practice.

The consistency in the basis set has traditionally been mistaken as the same set of
basis functions for each atom to be used in the calculations. This conceptual mistake
subtly assumes the basis functions or a set of basis functions to be associated with a
speci®c atom or a group of atoms in a calculation. However, atoms and basis
functions are two fundamentally separate concepts that do not have any necessary
associations in the construction of molecular wavefunctions. An atom in a
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calculation is distinguished by its nucleus where some basis functions happen to have

certain mathematically characteristic values or properties, such as a maximum or a

value of zero (node). However, these basis functions do not have any other unique,

physically signi®cant connection to the particular nucleus. They are equivalent to all

other basis functions, located at other nuclei. This argument can further be extended

to the fact that all basis functions in a calculation are intrinsically equivalent with
respect to a speci®c group of nuclei or atoms. In other words, the basis functions in a

calculation cannot be designated by a speci®c atom or a group of atoms and cannot

be subdivided into two or more groups just based on where they are centred. In fact,

the molecular wavefunction is always expanded by the entire set of (symmetry-

adapted) basis functions used in a calculation, regardless of where the basis functions

are located. Therefore, the consistency in the basis set means the exactly same set of

basis functions located at the exactly same positions.
The intermolecular energy between two molecules A and B can be treated as the

relative energy of the supermolecule AB with respect to the state where A and B are

in®nitely separate. Two di� erent calculations should be performed: one for AB at a

given intermolecular separation (and mutual orientations of A and B) and the other

for AB at the in®nite separation (A ‡ B). The corresponding energies are EAB and

EA‡B ˆ EA ‡ EB. In order to maintain the consistency in the basis set between the

two calculations, exactly the same set of basis functions should be used. Figure 1
shows how a schematic basis set is constructed to retain the consistency and how the

basis set consistency leads to the counterpoise method. The schematic basis set

consists of two in®nitely separate unions of the basis functions: ÀAB ˆ ÀA ‡ ÀB. In
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EAB = EAB(cAB) 
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EA+B = EA(cAB) +EB(cAB) 
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Figure 1. Schematic illustration of how the basis set consistency leads to the counterpoise
method. Two calculations are de®ned: calculation 1 for the energy of AB and
calculation 2 for the sum of the energies of A and B. Both calculations would use
the consistent basis set, a schematic basis set consists of two in®nitely separate
unions of the basis functions, ÀAB ˆ ÀA ‡ ÀB (shown by the double cycles). In
calculation 1, one of the two unions is set to be a ghost (broken double cycles).
In calculation 2, one portion of the ®rst union and another portion of the second
union are set to be ghosts (broken single cycles). Since the two unions of
basis functions are in®nitely separate, calculation 1 equivalently gives
EAB ˆ EAB…ÀAB† and calculation 2 gives EA‡B ˆ EA…ÀAB† ‡ EB…ÀAB†. The energy
di� erence is ¢EINT ˆ EAB…ÀAB† ¡ ‰EA…ÀAB† ‡ EB…ÀAB†Š as given by the counterpoise
method.
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calculation 1, one of the two unions is set to be the ghost. In calculation 2, one
portion of the ®rst union, corresponding to ÀA, and another portion of the second
union, corresponding to ÀB, are set to be ghosts. Since the two unions are in®nitely
separate, calculation 1 gives EAB ˆ EAB…ÀAB† and calculation 2 gives
EA‡B ˆ EA…ÀAB† ‡ EB…ÀAB†. As a result, the energy di� erence between the two
calculations is the intermolecular energy given by the counterpoise method,
(equation (3)).

The above illustration shows how the consistency in the basis set directly leads to
the counterpoise method. As a contrast, one can also easily ®nd how inconsistent is
the basis set without the use of the counterpoise method, equation (4). The major
problem with equation (4) is the ambiguity in choosing the basis sets ÀA and ÀB for
the calculations of the corresponding submolecular energies EA…ÀA† and EB…ÀB†.
Once a basis set is chosen for the supermolecule, such as ÀAB ˆ ÀA ‡ ÀB, one can no
longer logically separate it out to form ÀA or ÀB. A basis function may have larger
function values near a nucleus of A but the function is probably centred on a nucleus
of B, or vice versa. As a result, to truncate ÀAB into ÀA or ÀB is just as arbitrary as
to pick up any subset out of ÀAB. For example, one, of course, would not accept
the interaction energy from the following calculations: EAB is calculated using the
6-31‡G(d) basis set for the supermolecule while EA and EB are calculated using the
6-31G basis set for the submolecules. However, the nature of the problem remains
essentially the same even if the 6-31‡G(d) basis set for a submolecule were used for
the calculation of EA or EB. This is because all basis functions, including the di� use
functions or polarization functions, have function values everywhere around the
nuclei of AB and the inclusion or exclusion of any functions from ÀAB to form a
subset for the calculation of EA or EB is arbitrary.

The basis set inconsistency with the non-counterpoise method, equation (4),
becomes even more apparent when bond functions are included in ÀAB. Bond
functions are centred o� the nucleus in the region between the submolecules A
and B. It would be completely uncertain whether or not to include the bond
functions in a subset for the calculation of EA or EB. Furthermore, the locations
for the bond functions are not unique and could in principle be anywhere within and
around the supermolecule AB, which would also naturally include the nuclear
positions of AB. The bond functions should not be treated as unique and di� erent
from any other basis functions in ÀAB. The exclusion of either bond functions or any
other basis functions to form a subset from ÀAB for the calculation of EA or EB

would unavoidably be arbitrary and create inconsistency. The only consistent
approach would be to include all basis functions from ÀAB for the calculation of
EA or EB. This is exactly the counterpoise method, given by equation (3).

4.4. The nature of the basis set superposition error
The above discussions may provide insight into the nature of the BSSE. The

BSSE, given by equation (5), can be partitioned as

¯CP ˆ ¯A ‡ ¯B; …6†

where ¯A ˆ EA…ÀA† ¡ EA…ÀAB† and ¯B ˆ EB…ÀB† ¡ EB…ÀAB† are the contributions
for the submolecules A and B respectively. It is clear that the BSSE is simply an
energy di� erence of a molecule from two di� erent calculations, one with ÀAB and the
other with ÀA or ÀB. The calculation of a molecule with two di� erent basis sets
would naturally lead to a di� erence in the two resulting energy values. Such a
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di� erence does not represent any usual physical signi®cance and is purely due to the

di� erence in the two basis sets used. It would be deceiving to interpret the di� erence
as an error attributed to the de®ciency in any of the basis sets or as a correction for
the de®ciency in a basis set. When inconsistency is present in the basis set in a

calculation as in the case of equation (4), ¯CP is just to remove the speci®c
inconsistency in the basis set in order to retain the physically meaningful quantity
(namely the intermolecular energy). When consistency is already present, on the

other hand, it is unnecessary to consider the BSSE problem in a calculation.
The size of ¯CP was thought to re¯ect the quality of the atomic basis set used in a

calculation. It was believed that a smaller ¯CP corresponds to a better basis set. Such
an idea turned out to be contradictory to the results of many studies (Tao and Pan
1991a, Tao and Klemperer 1992) in which an inferior basis set resulted in small ¯CP

while a superior basis resulted in relatively large ¯CP. As discussed before, it is highly
arbitrary and uncertain to include or exclude basis functions from ÀAB to form ÀA or

ÀB. The resulting ¯CP is thus arbitrary and does not re¯ect the quality of the basis set.

5. Applications of the bond function basis set
5.1. Rare-gas dimers

The interaction potential for He2 has drawn the most attention in recent high-

level ab initio calculations. van Mourik and van Lenthe (1995) performed benchmark
full con®guration interaction (CI) calculations on He2 in the internuclear distances

from 4.0 to 12.0 Bohr. Two di� erent basis sets were used. One, labelled
LARSAT155, consists of 122 atomic basis functions (up to the h type) and 39 bond
functions {2s2p1d} distributed evenly at three positions along the HeÐHe bond. The

other basis set, STAND 159, consists of 130 atomic basis functions (up to the f type)
and 29 bond functions {3s3p2d1f } located at the midpoint of the HeÐHe bond. The

full CI calculations give a minimum potential of ¡10.947 K at the internuclear
distance of 5.6 Bohr from the LARSAT155 basis set and ¡10.903 K from the
STAND 159 basis set. The calculated potentials are in good agreement with an

empirical potential (Aziz and Slaman 1991) except that the empirical potential
appears too attractive at 4.0 Bohr. van de Bovenkamp and van Duijneveldt (1999)
later performed multireference CI calculations on He2 at 4.0 and 5.6 Bohr. The basis

set used consists of a [8s]6p5d4f3g2h atomic set and a set of the {3s3p2d2f1g}
midbond functions (a total of 301 basis functions). The calculations resulted in a

minimum potential of ¡10.95 K. Hattig et al. (1999) performed coupled cluster
singles plus doubles with perturbative triples (CCSD(T)) and full CI calculations on
He2 from 3.0 to 13.0 Bohr. A series of large basis sets were used, consisting of a d-

aug-cc-pVnZ atomic basis set (n ˆ D, T, Q, 5 or 6) and a set of the {3s3p2d1f1g}
bond functions, labelled 3211. The results are comparable with those of the other

studies. For example, the full CI calculation with the d-aug-cc-pVQZ±33211 basis set
gave a minimum potential of ¡10.93 K. In addition to the interaction potential, the

frequency-dependent interaction-induced polarizabilities and second hyperpolariz-
abilities of He2 were also calculated by Hattig et al. (1999). Finally, Cybulski and
Toczylowski (1999) calculated the He2 potential from 1.75 to 5.00 AÊ using a series of

basis sets consisting of aug-cc-pVnZ (n ˆ T, Q or 5) and the bond functions {3s3p2d}
(labelled as 332) and {3s3p2d2f1g} (labelled 33221) . The results are better than those

from the larger d-aug-cc-pV6Z and t-aug-cc-pV6Z basis sets without bond functions.
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Fewer ab initio calculations have been reported for other rare-gas dimers. In
the same study of He2, Cybulski and Toczylowski (1999) also calculated the
interaction potentials for all other rare-gas dimers consisting of He2, Ne2, and
Ar2. The CCSD(T) calculations with the largest basis set aug-cc-pV5Z±33221
give the following potential well depths De and minimum distances Re: for Ne2,
De ˆ 130:33 mHartree and Re ˆ 5:8559 Bohr; for Ar2, De ˆ 441:90 mHartree and
Re ˆ 7:1403 Bohr; for HeNe, De ˆ 66:57 mHartree and Re ˆ 5:7224 Bohr; for
HeAr, De ˆ 94:15 mHartree and Re ˆ 6:5998 Bohr; for NeAr, De ˆ 205:87 mHartree
and Re ˆ 6:6015 Bohr. The corresponding experimental values for comparison
are as follows: for Ne2, De ˆ 133:8 mHartree and Re ˆ 5:841 Bohr; for Ar2,
De ˆ 452:0 mHartree and Re ˆ 7:107 Bohr; for HeNe, De ˆ 66:15 mHartree and
Re ˆ 5:7362 Bohr; for HeAr, De ˆ 93:89 mHartree and Re ˆ 6:5718 Bohr; for NeAr,
De ˆ 208:62 mHartree and Re ˆ 6:5453 Bohr. Other molecular properties at the
ground vibrational state, such as the rotational constants B0, dissociation energies
D0 and vibrationally averaged bond distances hRi0, were also calculated using the ab
initio potentials. The MP4 calculations of Ne2 by Tao and Pan (1992a) and of Ar2 by
Tao and Pan (1994) were reported in their early applications of bond functions. The
De and Re values for Ne2 from the 6-311‡G(3d2f )±{2s2p} basis set, namely
130.07 mHartree and 5.896 Bohr respectively, are better than expected for the basis
set and MP4 method. This was later attributed to the second-order BSSE, prompting
the use of bond functions with su� cient large atomic basis sets in later studies (Tao
and Pan 1992b, Tao 1993c, 1994c). The De and Re values for Ar2 from the
[9s7p2d1f ]±{3s3p2d} basis set, namely 421.4 mHartree and 7.22 Bohr respectively,
are reasonable for the basis set and theory and are in contrast with the corresponding
values of 339.9 mHartree and 7.30 Bohr from the purely atomic basis set [9s7p2d1f ].
The [9s7p] atomic basis set was contracted from the well-tempered set (14s10p) of
Huzinaga and Klobukowski (1988). MP4 calculations were also carried out for
HeNe and HeAr using bond function basis sets extended from the large well-
tempered atomic basis sets (Tao 1993c). The De and Re values for HeNe are
62.58 mHartree and 5.8 Bohr respectively and for HeAr are 89.81 mHartree and
6.65 Bohr respectively, and are reasonable compared with the latest CCSD(T)
calculations (Cybulski and Toczylowski 1999). In a recent study of bond functions
(Tao 1999), MP4 and CCSD(T) calculations were performed for the Kr2 interaction
potential. The CCSD(T) calculations with the bond function basis set [9s7p4d3f]±
{3s3p2d1f} produced a well depth De ˆ 617 mHartree at Re ˆ 4:058 AÊ , recovered
over 99% of the experimental depth (Aziz 1979, Aziz and Slaman 1986). The MP4
calculations with the same bond function basis set gave De ˆ 613 mHartree (at
R ˆ 4:0 AÊ ), which was compared with the values of 354 and 461 mHartree from
the purely atomic basis sets [9s7p4d3f ] and [9s7p4d3f2g] respectively.

5.2. Rare-gas±molecule complexes
The systems of a rare-gas atom and a closed-shell stable molecule have long been

studied for the fundamental understanding of intermolecular forces and dynamics.
With the development of bond function basis sets, ab initio calculation has become
the most powerful tool for the intermolecular potential surfaces of rare-gas±molecule
complexes. Applications of the bond function method to these van der Waals
systems are systematic, routine and yet crucially important for accurate potential
surfaces. In fact, a vast majority of ab initio calculations of accurate potential
surfaces using bond functions have been for this class of complexes, which involve a
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wide variety of molecules, including hydrogen halides, molecular halogens, non-
hydrogen diatomics, polyatomic molecules, organic molecules and aromatic com-
pounds.

Tao and Klemperer (1994) used bond function basis sets to investigate the
potential surfaces of Ar±HF, Ar±H2O and Ar±NH3. The study ®rst tested the
e� ectiveness of bond functions for the Ar±HF system at various geometries and then
applied bond function basis sets for the calculations of the potential surfaces for Ar±
HF, Ar±H2O, and Ar±NH3 at the MP2 and MP4 levels. The basis sets consisted of
large atomic basis sets and a set of bond functions {3s3p2d} located at the midpoint
between the rare-gas atom and the centre of mass of the halide. For Ar±HF, the MP4
calculations found a global potential minimum (with a potential energy of
¡200.0 cm¡1) at the linear Ar±H±F con®guration, a second minimum
(¡88.1 cm¡1) at the linear Ar±F±H con®guration, and a potential barrier
(¡71.7 cm¡1). For Ar±H2O, a single potential minimum (¡130.2 cm¡1) was found
at a nearly linear hydrogen-bonded con®guration, together with the barriers of 22.6
and 26.6 cm¡1 for in-plane and out-of-plane rotations respectively. For Ar±NH3, a
single potential minimum (¡130.1 cm¡1) was found at a nearly linear hydrogen-
bonded con®guration, together with the barriers of 26.6 and 38.0 cm¡1 for rotation
about the NH3 symmetry axis and end-over-end rotation respectively. All these were
in good agreement with the newly available experimental potentials (Hutson
1992a,b, Cohen and Saykally 1993, Schmuttenmaer et al. 1993). The dependence
of the Ar±HF potential surface on the HF valence bond length r(HF) was also
studied in several calculations using bond function basis sets (Chang et al. 1993,
1995, Chuang et al. 2000). Such a dependence was found to be highly anisotropic,
being maximal for linear Ar±H±F and becoming essentially independent of r(HF) for
an angle of 458 or greater from linearity. These calculations were used to study the
infrared transitions corresponding to the vibrational states of HF in the Ar±HF
complex. Excellent agreement was found between new experiments and the predic-
tions (Chang and Klemperer 1993, Chuang and Klemperer 2000).

Tao et al. (1996b) calculated the potential surface for He±H2O at the MP4 level
using large atomic basis sets and the {3s3p2d} bond functions. The He±H2O
potential surface is characterized by a single potential minimum (¡31.8 cm¡1) at a
T-shaped He±H±O con®guration (³ ˆ 1058), together with the barriers of 13.4 and
12.6 cm¡1 for in-plane rotation at ³ ˆ 08 and 1808 respectively, and 20.0 cm¡1 for
out-of-plane rotation. Li et al. (1999) calculated the potential surface for He±NH3

using a similar approach. The He±NH3 potential surface is characterized by a global
minimum (¡33.0 cm¡1) at R ˆ 3:26 AÊ , ³ ˆ 908 and ¿ ˆ 608, together with the
barriers of 23.1 and 20.9 cm¡1 for in-plane rotation at ³ ˆ 08 and 1808 respectively,
and 10.5 cm¡1 for out-of-plane rotation. Also similarly, Gao et al. (1997) calculated
the potential surfaces for He±CH4 and Ne±CH4. The potential minima correspond
to the face con®guration (hydrogen-bonded ) with well depths of 26.2 cm¡1 for He±
CH4 and 59.0 cm¡1 for Ne±CH4.

SlavõÂ ek et al. (2001) calculated the potential surfaces for the Ne±HBr and Ne±HI
complexes at the CCSD(T) level using the aug-cc-pVDZ basis set extended with
additional polarization functions and the {3s3p2d} bond functions. For Ne±HBr,
they obtained the global minimum potential of ¡58.6 cm¡1 and a secondary
minimum potential of ¡55.7 cm¡1 at the linear Ne±H±Br and Ne±Br±H con®gura-
tions respectively. For Ne±HI, in contrast, they obtained the global minimum
potential of ¡55.7 cm¡1 and a second minimum potential of ¡48.1 cm¡1 at the
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linear Ne±I±H and Ne±H±I con®gurations, respectively. In the same study, MP2 and
CCSD(T) calculations using similar bond function basis sets were also performed for
the global and secondary minima of the potential surfaces for Ar±HCl, Ar±HBr, Ne±
HCl and Ar±HI. These calculations produced potential values in good agreement
with those from the known empirical potential surfaces (Hutson 1988, 1989,
1992a,b).

Taylor and Hinde (1999) reported CCSD(T) calculations of the potential energy
surface for He±LiH. The {3s3p2d} bond functions (Tao and Pan 1992b) were used to
augment the atomic basis set which consisted of aug-cc-pVTZ for hydrogen and
helium and truncated cc-pVQZ (which omits g-type functions) for lithium. Before
calculating the intermolecular potential surface for He±LiH, a series of test
calculations was carefully carried out to validate the reliability of the basis set in
reproducing monomer properties as well as in saturating the intermolecular energies.
The calculations produced a binding energy of De ˆ 176:7 cm¡1 for He±LiH at the
linear He±Li±H con®guration, more than twice that of an early ab initio study
without use of bond functions (Gianturco et al. 1997).

All complexes of rare-gas±halogen molecules appear to share similar shapes of
the intermolecular potential surface: two minima at the linear con®gurations and a
third minimum at the T-shaped con®guration. Tao and Klemperer (1992) surpris-
ingly discovered the linear minima in the ab initio study of ArClF and ArCl2
complexes by MP2 and MP4 calculations with the modest basis set 6-31‡G(2df )
without bond functions. The linear and T-shaped minima were found to have nearly
the same well depths, generating strong interest in these complexes in a series of later
studies. Huang et al. (1995) reported an accurate ab initio potential surface for He±
Cl2 from MP4 calculations with a large basis set consisting of a well-tempered atomic
set [8s6p3d,5s3p] and the {3s3p2d} bond functions. The calculations produced a
linear global minimum (±40.5 cm¡1) and a T-shaped secondary minimum
(±36.6 cm¡1). Bound state calculations were performed on the ab initio potential
surface. Despite the deeper minimum at the linear con®guration, the probability
distribution of the ground vibrational state still maximizes in the T-shaped
con®guration, in agreement with the observed microwave spectra for the similar
complexes (Harris et al. 1974, Xu et al. 1993). Williams et al. (1997) obtained similar
ab initio potential surfaces for He±Cl2, Ne±Cl2 and Ar±Cl2 from MP4 and CCSD(T)
calculations using bond function basis sets. Higgins et al. (1998) calculated the
intermolecular potential surface for HeClF and used it for the calculations of the
rotation±vibration levels of HeClF. The T-shaped secondary minimum for HeClF
was con®rmed by comparing the predicted transitions with the observed transitions.

Chan et al. (1999) reported potential surfaces for He±F2, Ne±F2 and Ar±F2 from
CCSD(T) calculations using large triple and quadruple zeta basis sets (Dunning
1989, Kendall et al. 1992, Woon and Dunning 1993) supplemented with the {3s3p2d}
bond functions (Tao and Pan 1992b). The linear well depths obtained are 35.9, 61.5
and 122.8 cm¡1 for He±F2, Ne±F2 and Ar±F2, respectively, and the T-shaped well
depths are 31.9, 61.4 and 110.0 cm¡1 respectively. Cybulski and Holt (1999) reported
the same calculations for He±Cl2, Ne±Cl2 and Ar±Cl2; they obtained linear well
depths of 44.3, 80.1 and 211.4 cm¡1 respectively, and T-shaped well depths of 41.9,
83.6 and 204.5 cm¡1 respectively. Consistent with the earlier studies of Huang et al.
(1995), Cybulski and Holt (1999) also found that large zero-point energy at the linear
con®guration contributed to the T-shaped con®guration of the ground vibrational
state for these complexes.
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Tao (1994c) reported a potential surface for He±H2 from MP4 calculations using
a large bond function basis set consisting of the atomic set [6s4p2d] and the bond
functions {3s3p2d}. The calculated well depth of 47.2 mHartree at the linear
con®guration agrees well with the experimental value of 48 mHartree. Groenenboom
and Struniewicz (2000) presented a potential surface for He±O2 from CCSD(T)
calculations using the aug-cc-pVTZ atomic basis set and the {3s3p2d1f} bond
functions. The potential surface has a T-shaped global minimum with a well
depth of 127.1 mHartree and a linear secondary minimum with a well depth of
116.7 mHartree. Fernandez et al. (1999) studied the potential surface for Ar±N2 by
CCSD(T) calculations using the aug-cc-pVXZ (X ˆ D, T or Q) atomic basis sets and
the {3s3p2d1f1g} bond functions. The CCSD(T) aug-cc-pVTZ±33211 surface was
characterized by two energy minima, the T-shaped global minimum with a well
depth of 451.5 mHartree and the linear secondary minimum with a well depth of
343.1 mHartree.

Tao et al. (1994) calculated the MP4 potential surface for He±CO using a large
bond function basis set and the corresponding rotation±vibration levels. A single
near-T-shaped minimum was found with a well depth of 20.3 cm¡1, in good
agreement with the well depth of 22.9 cm¡1 from a new empirical potential surface
of Le Roy et al. (1994). Kukawska-Tarnawska et al. (1994) calculated the potential
surfaces for He±CO and Ar±CO at the MP4 level using large basis sets with the
{3s3p2d} bond functions. Single potential minima were found for both systems at the
near-T-shaped con®guration with well depths of 21.9 and 108.9 cm¡1 respectively.
Shin et al. (1996) also reported a potential surface and rotation±vibration energies
for Ar±CO. The potential surface was from MP4 calculations with a large basis set
with the {3s3p2d} bond functions. A single near-T-shaped potential minimum was
found with a well depth of 96.3 cm¡1. Most recently, Toczylowski and Cybulski
(2000) reported a CCSD(T) potential surface for Ar±CO using a large basis set
consisting of the aug-cc-pVTZ atomic set and the bond functions {3s3p2d2f1f} . The
near T-shaped minimum was con®rmed with a well depth of 104.7 cm¡1.

The complexes of Rg±HCN (Rg ² rare gas) have been the subject of many
experimental and theoretical studies. Drucker et al. (1995) calculated a potential
surface for He±HCN at the MP4 level with a bond function basis set. The MP4
surface was characterized by a single linear minimum with a well depth of 25 cm¡1.
Bound state calculations using the surface were carried out for the rotation±
vibration level of He±HCN. Some of the predicted rotational transitions,
J ˆ 1 0 and J ˆ 2 1, were successfully observed in the supersonic molecular
beam by millimetre wave±microwave double-resonance techniques. The He±HCN
system is ¯oppy without a rigid geometry and the potential surface is shallow and
¯at. As a result, the ab initio calculations proved to be especially valuable in assisting
the search of spectral transitions. Tao et al. (1995) studied the potential surfaces for
Ar±HCN and Ar±HCCH. The MP4 surface for Ar±HCN was characterized by a
single linear minimum with a well depth of 135.9 cm¡1. In contrast, the MP4 surface
for Ar±HCCH was characterized by a single near-T-shaped minimum with a well
depth of 110.9 cm¡1. Bound state calculations were also carried out using the MP4
surfaces and the predicted transitions were compared with the experimental
frequencies (Cooksy et al. 1991, Bemish et al. 1993, Drucker et al. 1993). Cybulski
et al. (1999) calculated a CCSD(T) potential surface for Ar±HCN using a large bond
function basis set (aug-cc-pVTZ‡bf ). The CCSD(T) surface gave a linear global
minimum with a well depth of 141 cm¡1 and a barely noticeable secondary minimum
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near the T-shaped con®guration. Bound-state calculations were also performed
using the CCSD(T) surface and the comparisons with experiment were made.
Toczylowski et al. (2001) recently determined the CCSD(T) potential surfaces for
Rg±HCN (Rg ˆ He, Ne, Ar or Kr) using large basis sets including the {3s3p2d2f1g}
bond functions. The vibration±rotation levels were calculated using the CCSD(T)
surfaces for the four complexes and their deuterated analogues. The predicted
rovibrational transitions were in good agreement with available experimental meas-
urements. The study suggested that the agreement with experiment could be further
improved by using even larger basis sets.

The complexes of Rg±CO2 and Rg±OCS have also attracted attention in several
recent ab initio studies. Yan et al. (1998) presented a potential surface for He±CO2

from MP4 calculations using a large basis set with the {3s3p2d} bond functions.
They found a T-shaped global minimum with a well depth of 44.4 cm¡1 and a linear
secondary minimum with a well depth of 27.7 cm¡1. The rotation±vibration levels
were calculated using the MP4 potential surface and the results were in good
agreement with available experiments. Negri et al. (1999) presented MP4 potential
surfaces for He±CO2 and Ne±CO2 using large basis sets with the {3s3p2d} bond
functions. The He±CO2 surface was essentially the same as that found by Yan et al.
(1998) while the Ne±CO2 surface was similar to the He±CO2 surface except for the
greater well depths, 91.6 and 54.3 cm¡1, for T-shaped and linear Ne±CO2 respect-
ively. Higgins and Klemperer (1999) reported a potential surface for He±OCS from
MP4 calculations using a large basis set with the {3s3p2d} bond functions. The
potential surface has a T-shaped global minimum of ¡45.4 cm¡1, a linear He±S±C
secondary minimum of ¡28.7 cm¡1 and a third minimum of ¡26.3 cm¡1 at the linear
He±O±C con®guration. The rotation±vibration states were calculated using the
potential surface and were used to aid the experimental search for the spectral
transitions.

Koch et al. (1998) calculated the intermolecular energy of Ar±benzene at the
CCSD(T) level with a series of large basis sets (aug-cc-pVXZ; X ˆ D, T or Q)
supplemented with the {3s3p2d1f1g} bond functions. They obtained a dissociation
energy De ˆ 386 cm¡1 from the bond function basis set aug-cc-pVDZ±{3s3p2d1f1g} ,
better than the value of 385 cm¡1 estimated for the large atomic basis set aug-cc-
pVQZ. In a later study (Koch et al. 1999), they determined a three-dimensional
potential surface for Ar±benzene from CCSD(T) calculations with the aug-cc-
pVDZ±{3s3p2d1f1g} basis set. The vibrational levels obtained from dynamical
calculations using the three dimensional surface were in excellent agreement with
the available experimental data.

5.3. Molecule±molecule complexes
Wang et al. (1994a) calculated the binding energy De of the water dimer (H2O)2

at the MP2 level using several large atomic basis sets extended with bond functions.
The values of De were shown to converge systematically to 4.75 kcal mol¡1. van
Duijneveldt-van de Rijdt and van Duijneveldt (1999) calculated the binding energy
of (H2O)2 at the MP2 level using a very large basis set consisting of the atomic set of
249 functions and a set of bond functions {3s3p2d1f}. The calculations gave
De ˆ 4:87 kcal mol¡1 for the Feller±Frisch geometry (Feller 1992). Wang et al.
(1994b) studied the relative stabilities of the two hydrogen-bonded structures of
H2O±H2S by ab initio calculations at the self-consistent ®eld (SCF), MP2, MP4,
coupled cluster singles plus doubles (CCSD) and CCSD(T) levels using basis sets
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consisting of the 6-311‡‡G(3df,3pd) atomic basis set and a varying set of bond
functions from {3s}, {3s3p}, {3s3p2d}, to {3s3p2d1f }. The calculations showed that
the structure where H2O donated a hydrogen bond to H2S was more stable than the
other structure where H2S donated a hydrogen bond to H2O. The calculated binding
energies were 12.1 kJ mol¡1 for the former and 10.9 kJ mol¡1 for the latter. Wang et
al. (1995) calculated the binding energy De for the complexes HOH . . . NH3,
FH . . . NH3, and H2O . . . HF at the MP2, MP4 and quadratic con®guration inter-
action singles plus doubles with perturbative triples QCISD(T) levels using several
large atomic basis sets extended with bond functions. The respective values of De for
the three complexes were shown to converge systematically to 6.15, 11.64 and
8.16 kcal mol¡1.

Tao and Klemperer (1995) reported MP2 and MP4 potential surfaces for the HCl
dimer. The basis set consisted of a large atomic basis set (Huzinaga and Klobu-
kowski 1988) and the {3s3p2d} bond functions (Tao and Pan 1992b). The well depth
at the global minimum, corresponding to a hydrogen-bonded geometry, was
calculated to be 710.9 cm¡1 at the MP2 level and 643.9 cm¡1 at the MP4 level.
The potential surface was in good agreement with a new empirical potential of Elrod
and Saykally (1995). Chen et al. (1997) reported MP2 calculations on the HBr dimer
using a basis set similar to that for (HCl)2 (Tao and Klemperer 1995). A hydrogen-
bonded global minimum was found for the HBr dimer with a well depth of 630 cm¡1,
in good agreement with their own experimental results from pulsed-jet Fourier
transform microwave spectroscopy.

Tao and Klemperer (1993) studied the equilibrium structure of the ammonia
dimer (NH3)2 by MP2 and MP4 calculations using large bond function basis sets.
They found that the potential minimum for (NH3)2 probably corresponded to a
cyclic con®guration rather than to a con®guration containing a nearly linear
hydrogen bond. Their MP2±[7s5p3d, 4s1p]±{3s3p2d} calculations gave a well depth
of 12.5 kJ mol¡1. Lee and Park (2000) repeated the study of (NH3)2 using a series of
correlation-consistent basis sets without bond functions. Their study essentially
con®rmed the ¯atness of the potential pathway along a wide region from the
symmetric cyclic con®guration to the asymmetric hydrogen-bonded con®guration,
consistent with the study of Tao and Klemperer (1993). Tao et al. (1996a) studied the
equilibrium structure for the nitric acid±water complex and obtained a binding
energy of 9.8 kcal mol¡1 by MP2 calculations using large bond function basis sets.

5.4. Open-shel l and ionic complexes
Partridge and Bauschlicher (1999) compared the bond energies and bond lengths

of He H and Ar H calculated at the CCSD(T) level using bond function basis sets
with those calculated using atomic basis sets. Using the aug-cc-pVTZ±{3s3p2d} basis
set, they found that the De and Re values for He H are 22.26 mHartree and
6.673 Bohr respectively and for Ar H they are 149.90 mHartree and 6.815 Bohr
respectively, essentially identical with those from the aug-cc-pV5Z basis set. Their
best CCSD(T) values of 22.55 mHartree and 6.665 Bohr and of 150.77 mHartree and
6.802 Bohr respectively are obtained from the aug-cc-pV5Z±{3s3p2d} basis set. The
study concluded that employing bond functions is an extremely e� ective approach
for studying weakly bound systems.

Lee et al. (2000) calculated the potential surfaces for the ground and ®rst excited
states (~XX 2¦ and ~AA 2§‡) of the He OH and Ne OH complexes and further calculated
the rotation±vibration energies using the potential surfaces. The potential surfaces
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were calculated at the CCSD(T) level using the aug-cc-pVTZ±{3s3p2d2f1g} basis set.
The calculated rotation±vibration energies are in good agreement with available
results. Similarly, Klos et al. (2000b) calculated the potential surface for the ground
state of the Ar OH complex and further determined the rotation±vibration states.
The global minimum was found at the linear Ar±H±O geometry with a centre-of-
mass distance Re ˆ 7:0 Bohr and a well depth De ˆ 141:2 cm¡1.

Cybulski et al. (1996) calculated the potential surface for the ground state of the
He CH complex at the MP4 level using a large well-tempered basis set extended with
the {3s3p2d} bond functions. A relatively deep minimum of De ˆ 335 mHartree was
obtained for the A 00 state at the T-shaped geometry with Re ˆ 5:0 Bohr and

³ ˆ 1008. Kendall et al. (1998) calculated the potential surface for the ground state
of the Ar NH complex at the MP4 level using a similar bond function basis set. A
global minimum of De ˆ 100:3 cm¡1 was obtained at the T-shaped geometry with
Re ˆ 6:75 Bohr and ³ ˆ 678. Cybulski et al. (2000) also calculated the potential
surfaces for the ground state ( ~XX 2¦) and the ®rst excited state ( ~AA 2§‡) of the He SH
and Ne SH complexes at the CCSD(T) level using the aug-cc-pVTZ±{3s3p2d2f1g}
basis set. They further calculated the rotation±vibration states of the systems, which
were in good agreement with available experimental results. Similarly, Klos et al.
(2000a) calculated the potential surface for the ground state of the He NO complex
and further calculated the rotation±vibration energies of the system.

Buchachenko et al. (2000) calculated the interaction potentials for the lowest
adiabatic states of § and ¦ symmetry of Ar O and Ar O¡ at the CCSD(T) level using
the aug-cc-pVTZ±{3s3p2d} basis set. The study shows that, for the Ar O neutral
complex, the ¦ state potential (with a well depth De ˆ 380 mHartree at Re ˆ 3:4 AÊ ) is
deeper than the § state potential (De ˆ 220 mHartree at Re ˆ 3:8 AÊ ) but, for the
Ar O¡ anion complex, the ¦ state potential (De ˆ 2400 mHartree at Re ˆ 3:35 AÊ ) is
shallower than the § state potential (De ˆ 3600 mHartree at Re ˆ 3:02 AÊ ).

6. Conclusion
It is clear from this review that bond functions, supplementing traditional atomic

basis sets, are highly e� ective in o� setting major de®ciencies in atomic basis sets and
are becoming an increasingly popular approach for accurate ab initio calculations of
intermolecular potentials. The main intuition and expectations that guided the early
use of bond functions have been con®rmed. The understanding of the nature of
BSSE not only has provided a logical justi®cation for the counterpoise method but
also has contributed to the ultimate successful use of bond functions.

Bond function basis sets will continue to serve as a popular approach for high-
level ab initio calculations of intermolecular potentials and will play a major role in
the fundamental understanding of intermolecular forces.
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